P OL S K A A K A D EMTI A N A U K
INSTYTUT PODSTAWOWYCH PROBLEMOW TECHNIKI

ARCHIWUM
MECHANIKI
STOSOWANE]

ARCHIVES DE MECANIQUE APPLIQUEE

2

IX

TOM IX WARSZAWA 1957 ZESZYT 2
PANSTWOWE WYDAWNICTWO NAUKOWE



CERTAIN STABILITY PROBLEMS OF RECTANGULAR PLATES
WITOLD NOWACKI and MAREK SOKOLOWSKI (WARSZAWA)

1. The object of this investigation is to determine critical loads of
rectangular plates simply supported on two opposite edges and having
different boundary conditions along the two remaining edges.

It is assumed that the forces q. = h 0., ¢y =hoy and qsy =h1yy (h denotes
the plate thickness) act in the plate and are, in general, functions of the
variables 2 and y, being first determined from the solution of the problem
of plane stress. Our problem consists in reaching an accurate solution
of the stability problem of rectangular plates of this type. The method
adopted is as follows. The differential equation of the problem is replaced
by the equivalent integral equation replaced in turn by an infinite system
of secular linear equations. The buckling condition is the principal deter-
minant of this system set equal to zero. Then the critical load of the plate
is directly obtained from the lowest eigenvalue of the kernel of the
integral equation.

First, the following fundamental problem will be solved. Consider
a vectangular plate simply supported on the edges =0, * =¢ and
clamped at the remaining edges. . =
Such a system is equivalent to _._L.Q__QD____G_:L 'y
a plate strip with a periodic " !
load (with the period b) gy, gy 0

&

and qvy, and additional forces
r (x) and T (x) perpendicular to
the plate and acting along the
segments y = =+ ib/2 (i = 0,1,
2, ..). The value of these ad-
ditional forces is so selected that
the deflection w of the plate vanishes along the line of their action, as
also (for reasons of symmetry) the slope 0w/dy of the deflection surface.
The differential equation of this problem has the well-known form
0w 0'w 0tw
(11) N ('a}* +2d_'"—'mzay2 + W) =
2 2 2 P
='—(QJ.%§ +qy g;?‘{‘ quy(;)‘?awa) i R[I:y}‘l'R(I)y)s
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where N denotes the flexural rigidity of the plate and R (x, y) or R (x, )
the external load comprising periodically distributed linear loads » (x)
or 7(x).

The solution of differential equati‘on (1.1) can be expressed in the form

o 0* *w
(1.2) wm;y)’_—_‘_lj w(m,y;E.n)( f &2 Hqua?;v'} 2q5"d§() )dEdU+

+ wy, (2, y) + wy (x, y);

here w (x,y; & n) denotes the Green function of the Eq. (1.1). This
function represents physically the displacement w of a point of the plate
with the coordinates (x,y), due to the action of concentrated forces
(Fig. 2); wy(x, y) and wy(x, y) denote the deflection surfaces due to the
action of the additional forces r (x) and 7 (x) (Fig. 3), respectively. These
quantities will be determined under the assumption of q.= qy = q.y = 0.

- __J_ | e o
7] 1
?DE??_D baho j—‘ ? rix) rix) r(x) § o
o e s e
e | b ] e | bh | b
%4
Fig. 2 Fig. 3

The load by the concentrated forces, according to Fig. 2, can be re-
presented in the form of the infinite series

4
(1.3) p(x,y) = e ;1 sin a, £ sin ay x+

+— ab Z 2 sin «, & sin a, x cos ﬂm 7 COS ﬂm Y,

m n

where

Oy = —,

ns 2mam
a ﬁm*‘*"""

Similarly, the load by the additional forces r (x) and 7(x), according
to Fig. 3, can be represented as

(1.4) R(m,y)+_1i(x,y)= 2”'“ sin g © + — ZZ‘?“ sin a x cos fn Y -+

n

1 : =
3 32 TaSina, + - E 2 Ty (—1)" sin a,  cos fm y,
n m n



Certain Stability Problems of Rectangular Plates 111

where 7, and 7, are the Fourier expansion coefficients for the func-
tions 7 (x) and 7(x) in the x-direction. The Green function w(x,y;é, )
should satisfy the differential equation

(1.5) AAw (@, y; & 9) =p(x,y).

Assuming that

w(x,y, &y = Z @y Sin a, x -+ }_: Z bum sin au T oS fu Y,

we obtain directly
4 sin a, & sin a, x
S‘l dn
4 8 %) o sinanEsin a, & cos fun cos fu y

ab ‘-‘J ..'TJ .f.1mu

(1.6)  w(x,y,&n) = i

where

—l =Nﬂf” "I.um Nt‘ s ﬁi’) ’

The functions w, (x,y) and wy (x, y) are obtained from the equations
a b

wy (x,y) = ] l R (&n) w(x,y, &n)dédy=
n o

_ 1 ymsinax ) TuSin an & COS fn y

(L7 b Z dn s 2“ y ’

/
n " " Anm

a b

wy@,y) = | | R(Ey) W (x,y,&ndédy=
00

1 )ﬁ Ty Sin u,,'t oy 2 2 7a(—1)" sin ap €08 fu Y

" " v ] nm

We now apply the Green transformation to the surface integral
appearing in the Eq. (1.2):

: Fw, Pw P w
(1.8) —wa{-r,y,-f,?})( dt_+q},¢, +2q, 505 )dsdu—

[ ?@ — a2 g

- [ w550+ T 12 T acan,

dw(n.,ijl)

0 "
Q '_Qﬂ dn

= | Iw(w )y

0 & on'
the notations being as follows:
Qu = w (x, y, & 1) (qs cos® ¢ + gy sin® ¢+ 2 gz sin g cos ),
Qus = w (x,y, & n) [(g:—qy) sin ¢ cos g+ qzy (cos® - —Sin‘2 7).
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The surface integral is faken over the rectangle with the edges x = 0, «;
y =0, b/2.

The curvilinear integral in the Eq. (1.8) is, in our case, exactly equal
to zero, since w (&,1) =0 and w (x,9, & 9) =0 at the edges of the plate
considered. Thus, we pass to the surface integral appearing in the right-
hand member of that equation. Substituting the expression (1.6) for w we
obtain, after the necessary calculations and rearrangement,

0*(w qs) , 0°(wqy) i 0*(way) 4 Ysin @
d&s on? 080y ab—* A
Ny s 0* q* 0 sy d ()géq
s;na,;E(aé.g el +2 dfda)+2a"003u"5(dé+ 5
¢ Cl'. sin ay, EI v Sito 1—1‘005 ﬁmy sin ay & cos ﬁm >
n m nm

0" qc q, 0% gy 0g: , 0gy
( _1_ (31; L 4 o a 3 1) +2 ay cos an & cos fm 7 (5’5 o 5;?_:) —

— 2 ﬁm Sln Uy E Sln ﬂﬂ'l 7 (dd ? + dqq‘fhif

) qs aj, sin a, & cos fuy —

—q, B sina, &cos fin 1 —2qsy anfm cos ayé sin fin 1]

We can now use the familiar equations of equilibrium for a plane
state of stress:

do: , Oy drs,
at"[—a ""JX——-O dE

f} oy,

U dy

+oY =

Assuming that the mass distribution is of the potential type, that is,

_ do 00
QX_—_HEIE’ oY= oy’

we obtain the conditions

d_q. 6__(1;;;_ 0 os +drg,l _: o
0& oy (05 0 o0&’
(JQ1 dq: dTEf 60’1I oo
1.9 5% AN} £ e/ ] WS il
o) + 0 {‘GE T d:q) hd?}’
a q‘- +2d q’.‘ 2

(}Ed + ()JJ' "—ht,!d).
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Using these equations we can write the integral equation (1.2) in the
form

a M"

(1.10)  ap(x,y)= ] ’ w(é, ?}) bZSmAan_x (h_lrpsma,; ¢+2h %—{? @t €OS an § —
m n o

: : sin au ﬂ: cos i
~—Qqsa;, sin ay 5) Z Z e ( AP sin o, £ €os fu 1 +

M m ?IH.I

oo o , . 2 .
“+2h oE tn oS an€cosPfuy —2h 6'*‘? Bm sin a, & sin fn—qs o sin wy Ecos fny—

—qy ﬂ: sin ay, & cos ﬁm N— 2 iy tn ﬁ.-n cos ay & sin ﬁm ?}')] dé& d'fj +

+ wy, (x, y) +wy (2, Y)-

If 00, 0&=0d/dy= Ad =0, the body forces are also equal to zero. This
being the case, we can rewrite the integral equation considered in the
more compact form:

¢ o 4 ¥ a’ sin a, x sina, &
(1.11) w(.r,y)z‘] J w (&, J}){ bq" 7

0o

sin a m Cos 1
- ab 2 2 st €0 vl |(qs @ + gy, p2) sin an € cos By +

Pt S | tm

+ 2 Qzy dn fJ’m cos a, & sin ﬁm ?}!} dé& d?lr -+ wy, (x, ‘y) + Wi (x, 'y}

We have thus obtained a Fredh olm non-homogeneous integral equa-
tion of the second kind.

For the solution of this equation, we assume that the deflection of
the plate has the form

(1.12) w (I‘, y] = \' A, sina, x- l‘ 2‘ By sin a, X cos ﬁm Y.

H' JI m

Substituting the expressions (1.12) and (1.7) in the Eq. (1.11), we obtain,
after certain simple transformations, the following relations between the
coefficients Ay, Bum, T and 7,:

4 1 Tu
I Au = b | ( \ A; jn ‘l‘ v \ Bﬂ b}kn) + b/1 }‘ bA,’
{ 1‘13} n ' _|f f{ n "
8 \ \" _ 27y 2T [_—- 1H i
Bun =3b A,,,,,{ o Aj G * S d”’”’”) ™ b A L

; .‘.‘
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The notations introduced are as follows:
a b2
Qjn = J f q: (&) a2 sin a; & sin a, §d S dy,

a b2
bje = ] J :(&,m) @ sinq; & sin an € cos fend&dy,
0o

a b
(1.14) Cinm == l. J Ko (&,m) sin a; & d & dy,

00
a .‘a.,r?.
jrnm = l ‘ Kum (&, m) sin a; & cos fy, nd& diy,
]
Kmu(sgﬂ') = ‘q,‘. (5; 'J]I') “.f, -+ qy (‘5; ?7) Hf}l] sin a, § cos ﬁm Iy 4
+ 2 qeq (€, 7]') oy i cOS ay, & sin ﬁm 4.

In order to determine the coefficients A,, Bum, » and 7,, two further
equations can be used. Bearing in mind the boundary conditions
w (x, 0) = w (x, b/2) = 0, we obtain these equations, from the Eq. (1.12),
in the form

(115) Au + _E: Bum e 0. An ‘1‘ E ("-'1)"" -BHH! =0.

The Egs. (1.13) and (1.15) represent a complete system which suffices to
determine the deformation of the plate and the critical loads. This system
can, in certain case, be reduced to a simpler form containing the B,
coefficients only.

We pass now to the investigation of several particular cases. If we
consider the case of a plate loaded symmetrically in relation to the
straight line parallel to the x-axis and passing through the middle of the
plate, the assumption of r,=0 and the rejection of the second condition
(1.15) will suffice. Thus, we obtain the system of equations,

A.-; — b4| ( AI QAjn l—' 2 ZBjk bﬂul) bﬁ'n

8 .
Bum= ab‘T‘— ( 2 Ajcjnrn +- Z E B_Ha d'ﬂulm) +
Ham \ 5

7 3

2 T.-.g
b f1 f[fff

(1.16)

Ay + ZBM: = 0,
for a plate with the dimensions a-b (see Fig. 1). The system of equations
(1.16) can, by successive elimination of the coeff1c1ents A, and 7, be
reduced to the more compact form

8
(1.17) - Apw Bum +2 !ul By = bE EBjk{aj::_bjk:t_cjfl;!f+d_,r-‘mm)

" I
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Starting from the Egs. (1.13) and (1.15), we can also investigate the
case of a simply supported plate strip acted on by periodically distributed
forces q¢, qy and quy (Fig. 1).

If the coefficients », and 7, in the Eqgs. (1.13) are disregarded, and the
two equations (1.15) excluded, we obtain directly

4
A= (E Ajajn+ 2 S Bju bﬂm) ’
f k

(1.18) abau\ S

8 W
an — v Aj Cinm + E 2‘ B}'k d}’k.-un) .
k

ab {.'I.uu.' ( f T,

In this case, attention should be drawn to the fact that the corresponding
curvilinear integral in the Eq. (1.8) is equal to zero, since w (x, b/2) 54 0.

L{QQELEQ A dd oy R
T

S
T T ltﬁj

b ) b | bk |

Fig. 4

This can easily be demonstrated by using the condition that gy =0 along
these segments (x = 0, x = b) in consequence of the symmetry of load.

We now pass to another case. Consider an «-b/2 plate simply support-
ed on three edges, the edge y = 0 being clamped (Fig. 4). This case can
be obtained from an infinite = ?

e e i _E
plate strip subjected to the action AT -1 -9 + 4 “«
At I

of periodic forces g, and to the

supplementary forces r (x)-(— 1)’ —————-j'——--—--lr--—
along the lines y = ib (¢ = 0,1, ...). b | b (b
The integral equation has in
this case the form X Fig. 5
(1.19) w(x,y)=— fn‘ w(z,y,§9) (q_s%g—f +au ri} ,;’ 1+ 2qsy ;5—3;] d&dy +
Fw: (@, ).

The Green function w is obtained by determining the deflection of
the infinite plate strip loaded by the periodic forces -+1, —1 according
to Fig. 5. This problem consists in the solution of the equation

NAAW (x,y,&n) = pl(x,y, &,
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where
8 ; ; : 3
plx,y, &y = ab %‘ ;‘ sin a, & sin a, & cos fu 1 cos fim Y,
and
x = 2m—1)s .
fhl“_:'r%?s ﬁmz'{' 3 b JT (m,n:1,2,._.}_

Assuming w in the form,

w = 2 Eswmn sin a, @ cos ﬂm Y,

n m

we can easily find the Green function for the Eq. (1.20):

Z Z sin a, & sin a, @ cos ,8,,, 7) €OS ﬁm

w(x,y, &)= 1
m n nm

Similarly we obtain the deflection w, (x,y) due to the action of the
supplementary forces 7 (x), according to Fig. 4. Since this load can be
represented in the form of a series

2 VOV L
-E-) el Ty SIN o, X COS ﬁm Y,

m "
we obtain

_ 2w 7y SIN ay & COS ﬁ;» Y
(1.20) wr (@, y) =3 £ 2——" " Aum

If Green transformation is applied, as before, to the double in- -
tegral, and the corresponding curvilinear integral disregarded, we obtain
a Fredholm non-homogeneous integral equation of the second kind:

a !JV

(121) wlx,y)= —Jj ﬁJ(-'r,y,&uJ(qagL;er

02w \
e qug 1:} +2q; *i‘d.{.-a dédy+wr(z,y).

After a transformation of the integrand, and using the conditions (1.9)
and (1.10) we solve the equation (1.21) by substituting

w (a, y)—SS

Ay sin ap €08 f y.

Thus we obtain the system of equations

21y

8
{122) Amﬂ ' v v Aﬂ: dﬂmm + b |
.'m:

b /JFHH' AJ /
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The second system of equations will be obtained from the boundary
condition w (x, ib) = 0. From the Eq. (1.20), we obtain:

{1 23) 2 nm = U

mn
The Egs. (1.22) and (1.23) enable us completely to solve the problem
under consideration.
We can pass to a certain particular case, assuming r(x) =0 and
rejecting the condition (1.23). Thus we obtain the system of equations

an 5‘ ? Ajr Lgnn

already obtained for a plate s&mply supported on all edges and having
the dimensions a and b, [1].

(1.24) i =

The above considerations based on the reduction of the determination
of the critical loads to that of the zeros of an infinite determinant,
produce, except in certain particular cases, enormous difficulties. Practi-
cal calculations must therefore be confined to a few elements of an
infinite matrix and of a determinant of the third or fourth order.

Considerable difficulties are also encountered in the general case of
plate load if we want to take into consideration the accurate values of
the stresses oy, oy and 7,y. These stresses,
calculated from a plane state of stress, are
usually represented by infinite series or by
Fourier integrals. In many simple cases
of load, where the forces q are constant over
certain regions of the plate, the calculation
is, however, considerably simplified.

2. In the second part of this paper, we
shall present a series of simple examples x
some of which have already been solved in
other ways by various authors. They serve
as illustrations of the procedure described.

(a) A plate clamped along two opposite edges and acted on in the
x-direction by a load uniformly distributed over the segment 2¢ (Fig. 6).

From the equation (1.4) we obtain, with the simplified assumption
of gv=quw=0, qy=¢q for b/2—c<<y<b/2+c and g, =0 over the
remaining part of the plate:

Fig. €

b2 a
Ujn == f [ q o’ sin a; € sin a4, Edédy= qa’
hj2—ce 0

h‘E a
ah @ sin e
bjim = f q ¢ sin «; & sin a, & cos iy dédy = .98 ﬁ_f._ djn,

2
azfu

1 2 é;n '
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&
» @ Sin fime
Cinm = q—z— _',,}T" Ojn

fE_C'L sm (ﬁk“‘ﬂq:) c Sln ﬁk ﬁm] C

q 2 y ﬁk"l“ﬁm a ﬁk‘“ﬂm
where §;, is the Kronecker symbol
The system of equations (1. 1'7) therefore takes the form

d_,-'kum = )f" !

4 s
(2.1)  AwmBum= S‘ Buk{ qb ﬂ,, q}“_ﬁfk $ ]
sin (ﬁk‘tﬁrﬂ) = “fE} (fjk = ﬁﬂi)c K |
* ( (B +ﬂm) (ﬁf — fm) ) 2 /-'.-;! =

Owing to the symbol d;, the series appearing in the Eq. (2.1) is very
simple.

Further simplification is obtained in the case of 2¢ = b, that is for
a plate subjected to a uniform pressure.

Then,

ab .
Ujn = ¢ U_,, S ajn y b,r'krl = Cjnm = 0; dﬂmm =g ? Cli, (sju Skme

The system of equations

Bmﬂ LI!H!H+2AN ZBM ab(q @, 4 2, By qu,, Bnm
ke

can be reduced to

Bl’! m Z B”k

2[q Gﬂ_*-.;-tuj a /1rm: qr;;f
and

(2.2) 1 _y_ 1

2(qa2—4,) <4, —qa

Hence the- critical value of the load g can be obtained with a desired
degree of accuracy. Thus, for instance, using only two terms of the sum
(2.2), we obtain the critical load for b/a = 2 as equal to g = 7.77 Na?/b* —
instead of 7.69 Nz*/b® as obtained by Timoshenko, [2].

(b) A plate subjected to concentrated forces (Fig. 7). We assume an
approximate force distribution in the plate taking qvy=qy=0, q.==P/2~
<[8(y —c)+38 (y—b-+c)], 8(y) as denoting the so-called Dirac function'.

' The meaning of this symbol is explained by the equation

b
[ flx)é(x—e)dy={lc), a<<ec<b.

il
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Uncder these assumptions we have
Poctjtg 5

Q== 4 “n Ofus

Pa .
b= T a?cos ik ¢ bjn,

- Pa! , :
Cinm == 4 O'.j cos ﬁm ¢ djn,

Pa
djfnu" = "‘4 a;: cos BI’( € cos ﬁm C é]".

Our system of equations takes the following form:

2

1

N Buan =+ 2 Ay Z By, = b
3

2
Pa; E Bur(1— cos fli ¢) (1—cos fim ).
'J'.-

P

£
L g 4
1 n

=}

7

==

c ]?
]
Fig. 7
This system can be transformed as follows:

. 2Pead - E . 2Put _
¢2.3) fros— b 8;C—2 d58¢; c= 5 838~—224,8, ¢,
with the notations

Z Bum (1-"" cos ﬁm C) =C,

I Z‘ Bnm =c 3
1‘24) | n e
"i 3] = 2 .].':___3)”%;_6"’_’,C’

i Aum m

Aum

- E (1 —cos fm c)*

From the system of equations (2.3) we can easily find the value of the

critical force P in a closed form:
b _"1_—]— 2 s,_, Ju

WL EPROre F
In the particular case of ¢ = b/2 (the load of the plate consisting in one

force P), we obtain, after calculation of the sums (2.4),
nxb

4Nan sheche-te

s '
E: a sh?g—g* '

&= 2a
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If we pass to the limit for b— co, we obtain the known Somme r-
feld solution, P;=4 Na/a, [3]. In a similar manner, the solution in
a closed form can be obtained for a plate loaded by an arbitrary number
of 21 concentrated forces symmetrically arranged. This problem leads
to the calculation of the determinant of the order (I + 1).

(c) A plate loaded by concentrated

e =5 —p} L forces according to Fig, 8.
e ¢ TR Assuming that qv = quy = 0 and
/ _i|' q¢r=Pd(y—rc), we obtain the system
= |"‘ — of equations
b
Bmu -Ium '!' 2 ‘Iri S an w—
X m
2Ph
Fig. 8 = 2_; Bjw sin ay ¢ sin «; c.

a

The buckling condition for a plate uniformly loaded at the edges
y=0 and y =Db can be found in a convenient way. In this case, we
calculate the critical force from the equation

+21

== (},
2 An Amn—q ﬁm

obtained by a suitable transformation of the system (1.17).
(d) An infinite plate strip loaded in
a periodic manner according to Fig. 9.
The values of the coefficients in the
Eq. (1.14) for a simplified stress distri-
bution, similar to the above, are

Ajn = ( a? éfﬂ )

-'tz

a SJn c
bjm=qa 32 ﬁfk O,

s @ Sin fu c

c.““" q C\‘." 2 6}" ]

m

djk.-lm =q

ﬁj”-

, @ |sin (ar 4 am)c sin (ap— am)c
U
4 Ukt O O — tm

The equations .'(1.18) can be reduced tfo the unique equation

bikn Cum
2¢5 Bm’p S T d nm —"—'!"—{{'"—— '
( ) * ab A.-rm Z B’m Ik i ab Ap—4 a,«,.)
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This undergoes a further simplification in the limit case of ¢ — 0 where
lim 2qc¢ = P. We then obtain the known example of a plate strip loaded

=0
by concentrated forces. Thus, the expression for the critical force is
obtained in the closed form:

Nb a; 4N:rn sh® & nab

P”,: —_ — —— - , ; E=—
142 Y v 1 a e+sheche 2a

*[onlelT

(e) A plate simply supported on three edges and uniformly loaded
in one direction by a load g (Fig. 10).
The djkmu Component in the Eq (121) s
f 2
Qirnm = q C('EJ sin a, £ sin a; Edé¢ fCOS B cos roduy,
n (1]

ab
dﬂm m=4q a a}n O »

T UTEREX
In consequence, the system of equations(1.21) 7 |
is reduced to 1 8
qa? 2 BT
(2'6) AHI‘H = '_” AHJH + q'
4!1 mn b Anm b&

The Eq. (2.6), together with the condition (1.23),
enables us to represent the buckling condition in !
the form Fig. 10

(2.7) 2 _2_1.___ :

L Anm

The calculation of the infinite sum (2.7) leads to the transcendental
equation known from the technical literature on the subject under con-
sideration (see, for instance, [2]): :

u, tg 2 2 2 =y, tghm"'L

where
o
Nz*’

(f) Finally, it is desired to indicate the possibility of using the above
method in a series of problems concerning plates loaded in a non-typical
manner. As an example, consider a plate simply supported on all edges
and loaded according to Figs. 1la and 11b. In both cases, the state of
stress is determined as follows:

—— b
uye =y A+c?, c=n-, l=c
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for Fig. 1la,
_J0 for x-< a2,

I: ".'-_-_-—0‘ I-
=29 =\ ity —b/5) for x=a/2:

for Fig. 11b,
JO for x< a/2,

=({yy— U, =
qy = qxy q l q for x> a/2.

The Eqgs. (1.24) will take, in the first case, the form

4 —
(28) Amn e ab 1 ) E 2‘1 Aﬂf €kenm
Sinm J I
i e T e —— ]
“ ] b N
e LS ; |
‘.i//HHH#/H!‘I | J-"'—"':"'l
| A s | 7 8
7 13 | 9 |9
! p
b Y ., b2
x X
Fig. 11
where

0 for j+n=2i and j#n,

P mik "‘l_'_:‘rj_l
(—)"™" T for  j4mn=2i—1,

Ciknm =y Y +an

_4_ (__ 1 }m I fOI' _'}'= n.

In the second casé (Fig. 11b), we obtain the system of equations

(2.9) . o
ab Aun ;‘ A—”" €inm,

where

{0 for j+n=2i j#mn,

qb ( l)f-i-n.«l .
e S 2 ] = 24—
Cinm = 2(a;+ an) or j+mn 2i—1,

D p
g for j=n.
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Confining ourselves to a few terms of the sums appearing in the
relations (2.8) and (2.9), we can obtain, by setting the principal determ-
inant of the corresponding systems of equations equal to zero, appro-
ximate values for the critical loads.
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Streszczenie
O PEWNYCH ZAGADNIENIACH STATECZNOSCI PLYT PROSTOKATNYCH

Przedmiotem pracy jest wyznaczenie krytycznych wartosci obcigze-
nia plyt prostokatnych, podpartych swobodnie na dwoéch krawedziach
i spelniajgcych rézne warunki na pozostalych brzegach. Skladowe stanu
naprezenia w plycie moga byé¢ w ogélnym przypadku dowolnymi funk-
cjami wspobirzednych x i y. '

Warunek réwnowagi plyty podano w postaci réwnania catkowego

Fredholma (1.11) wzgl. (1.21). Poszukiwanie wartoSci wiasnej jadra
tego réwnania sprowadzi¢ mozna, stosujac podstawienia trygonometrycz-
ne typu (1.12), do znajdywania nietrywialnych rozwiazan ukladéw réw-
nan algebraicznych (1.13), (1.15) albo (1.22), (1.23).
" W szeregu przypadkéw szezegélnych uzyskano Scisle rozwigzanie pro-
blemu statecznoéci, a obciazenia krytyczne wyrazono w postaci zamknig-
tej. W przypadkach pozostatych ograniczyé¢ sie nalezy do uwzglednienia
tylko czesci nieskoriczonego wyznacznika otrzymanych uktadéw réwnan.
Uzyskane w ten sposéb rozwiazania przyblizone wykazuja zadowalajaca
zgodnoéé z rozwigzaniami §cistymi, uzyskanymi na innej drodze.

Pezwme

0O HEEOTOPLIX JTPOBNEMAX YCTOMYHBOCTH TPAMOYTOJBHBLIX
' TITACTHHOK

B pabore paccMarpuBaeTcs OUpefeNeHMe KPUTUYeCKMX BHAYEHMH Ha-
TPY3KY TPAMOYIOJBHBEIX IIJIACTMHOK, CBODOINHO OMEpPTHIX Ha ABYX Kpadx
¥ Y/IOBJIETBOPAIOIIMX Pa3JMYHBIM YCIOBUAM HA OCTANBHBIX. KOMIOHEHTHI
HANPAYKEHHOTO0 COCTOSHMSA B IUIaCTMHKE MOTYyT OBITE B ObmeM - ciydae
TIPOUBBOJNBHEIMM (DYHRIMAMY KOOPIMHAT T M Y.
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VeioBye paBHOBECUS TUIACTMHKM IPUBOAMTCA B BUMJE MHTErPAIBHOTO
ypaereuust @ pepronbma (1.11) wmm (1.21). Ilomexkn cobeTBeHHOrO 3HA-
YeHys Afpa 9TOr0 yPABHEHWMA MOIKHO, NPHMMEHAS TPUIOHOMETpHJIecKue
mozpcraHoBeky Tirma (1.12), cBecTH K HAXO0XKJEHMIO HETPUBMAJBHBIX pelle-
Huit cuerem ajrebpandeckux ypasuennit (1.13) m (1.15) mimr (1.22) u (1.23).

B neom psAfy cirydaes rmoy<deHs! TOYHBIE PelleHyusa npobieMsl ycToi-
YMBOCTH, a KPHTH‘IGCKHE Harpysxn Bb].'pa)KEHB[ B 3aMEKHYTOM BHIE.
B ocranbHBIX CAyYaAX CIEAYeT OrPaHMYUTHCSA YYETOM TOJMLKO YacTu bes-
KOHEYHOTO JIeTepMMHAHTa cucTembl ypaBHeHuil. IlonydeHusie Takum obpa-
30M NPUOMMIKEHHBIE PEIIeHUA YAOBIETBOPUTENILHO COTJACYIOTCA € TOY-
HBEIMM PeUIeHMAMM, TIOJLYIEHHBIMI APYTUM IIYTEM.
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