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CERTAIN STABILITY PROBLEMS OF RECTANGULAR PLATES

W I T O L D N O W A C K I and M A R E K S O K O Ł Ó W S K I (WARSZAWA)

i- The object of this investigation is to determine critical loads of
rectangular plates simply supported on two opposite edges and having
different boundary conditions along the two remaining edges.

It is assumed that the forces qx — hax,qy — hay and qxy = hrxy (h denotes
the plate thickness) act in the plate and are, in general, functions of the
variables x and y, being first determined from the solution of the problem
of plane stress. Our problem consists! in reaching an accurate solution
of the stability problem of rectangular plates of this type. The method
adopted is as follows. The differential equation of the problem is replaced
by the equivalent integral equation replaced in turn by an infinite system
of secular linear equations. The buckling condition is the principal deter-
minant of this system set equal to zero. Then the critical load of the plate
is directly obtained from the lowest eigenvalue -of the kernel of the
integral equation.

First, the following fundamental problem will be solved. Consider
a rectangular plate simply supported vn the edges x = 0, x = a and
clamped at the remaining edges. --, p ^ ^~, ) "
Such a system is equivalent to _ _ LLi J-J-J. XLL -—
a plate strip with a periodic
load (with the period b) qx, qy ( fj ' ' | j | r w f{X>

and qxy> and additional forcesand qxy> and additional forces ' J - i - -
r (x) and r (&) perpendicular to M-J
the plate and acting along the x,i\^ b/z b/z m b/z
segments y — ± ib/2 {i ~ 0,1,
2, ...)• The value of these ad- F i g- x

ditional forces is so selected that
the deflection w of the plate vanishes along the line of their action, as
also {for reasons of symmetry) the slope dw/dy of the deflection surface.
The differential equation of this problem has the well-known form
, , . d 4

(1.1)



110 Witold Nowacki and Marek Sokolowski

where N denotes .the flexural rigidity of the plate and JR (x, y) or R (x, y)
the external load comprising periodically distributed linear loads r {x)
or r(x).

The solution of differential equati'on (1.1) can be expressed in the form

(1.2) w (x, y) « - // w (x, y; £, q) L g f + % Ł ? + 2 %i ^A d £ d v +

+ wR (x, y) + wT{ (x, y);

here w(x,y; f, 17) denotes the G r e e n function of the Eq. (1.1). This
function represents .physically the displacement w of a point of .the plate
•with the coordinates (x, y), due to the action of concentrated forces
(Fig. 2); wR (x, y) and wR (x, y) denote the deflection surfaces due to the
aotion of the additional forces r (x) and r(x) (Fig. 3), respectively. These
quantities will be determined under the assumption of qx— qy = qxy ~ 0.

\

—0

-

1 , 1 [ «W

l\f - a

4 I

Fig. 2 Fig. 3

The load by the concentrated forces, according to Fig. 2, can be re-
presented in the form of the infinite series

(1.3)

where

— sina,,isma/lx+

8
s i n a" £ s i n a"x c o s $m n cos fim y,

Similarly, the load by the additional forces r (x) and r(x), according
to Fig. 3, can 'be represented as

(1.4) R(x, r,, sin an x

1 V , 2
-r-2J rn sm a,, x+~

b n O m n

rn sin anx cos fim y +

n (— 1)'" sin an x cos f)m y,
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where r,, and r„ are the F o u r i e r expansion coefficients for the func-
tions r (x) and r(x) in the x-direction. The G r e e n function w(x, y; £,•>])
should satisfy the differential equation

(1.5) A A w {x, y; £, if) = p (x, y).

Assuming that

w {x, y, £, ->]) — 2J a" s i n a" x + A ZJ b"m s i n a" x c o s P»i V'w

we obtain directly

(1.6) u>(.r,y,£,r])
4 y i sin an I sin an x

8
r ab

sin an $ sin «« x cos §m»/ cos ^„,

where

A = JVa4 I = N la? 4- #2 ) s.

The functions to^ (x, y) and xt)̂  (x, y) are obtained from the equations

(1.7)

io f|, (x, y) = J | R (f, r/) u; (x, y, £,
o o

1 y r,, sin a,, x 2_ y y r»^in_a'i.K_col_i
.:!»

n b

0 0
o,}{x, y) — \ J R (f, •)/) i^ (x, y, £, i

r„ sin a,,x _2_ y y r„ (— 1)'" sin a,, x cos jg,« y

We now apply the G r e e n transformation to the surface integral
appearing in the Eq. (1.2):

ds—•

the notations being as follows:

Qn == w (x, y, £, ?]) (qi cos2 q> + qv sin 2 q> + 2 q|fl sin cj cos ?>),

Q„s = w (x, y, sŁ, rf) | ( q j — q.;) sin 71 cos gj + q ^ (cosa cp—sin3 r/»)|.
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The surface integral is taken over the rectangle with the edges x = 0, a;
y = 0, b/2.

The curvilinear integral in the Eq. (1.8) is, in our case, exactly equal
to zero, since w (£, rj) = 0 and w (x, y, §, ij) — 0 at the edges of the .plate
considered. Thus, we pass to the surface integral, appearing in the right-
hand member of that equation. Substituting the expression (1.6) for w we
obtain, after the necessary calculations and rearrangement,

d2 (w q£) d2 (wqv) „ d8 (w q|,;) _ i Sin On X

2 .
— ąt a\ sin a„

x c ° s '̂'» ̂  r
r - - - sin a

Ann,

n £ cos /?„, 1] X

— 2 /?„, sin a,, £ sin /?,„?? I - ^ - + ~ - — <& a* sin a,, # cos jS,« i; —

- q n ffin sin a/( I cos /Sm jy — 2 q ^ a„ /j„, cos a„ | sin /?„, jy .

We can now use the familiar equations of equilibrium for a plane
state of stress:

Assuming that the mass distribution is of the potential type, that is,

Cr/> „ d®

we obtain the conditions

^ , a Oh, , Idat

(1.9)

do

df
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Using these equations we can write the integral equation (1.2) dn the
form

<1.10) w(x,y)=]'

., . ' J , 8 v 1 \i sin a,iX cos j3my L
— qs a;t san a,, £ + - - \ 2J ~A h A (/) s i n a» ^ c o s Z

/ a 0 Zl \
d 0 v d 0

-f 2 7i -̂ -t a,, cos an c cos /Sm 97—2 ft ̂ — pm sin a//1 sin /S„, 77—qi a„ sin a,, f cos /?„, i] —

— qn/S2 sin a« f cos /3m ?j — 2 q^ a,, /?,„ cos a« f sin /3m t]

+ tog (x, y) + wu (x, y).

If d0,dś^ó &/Ó r} = /I 0 s= 0, the body forces are also equal to zero. This
being the case, we can rewrite the integral equation considered in the
more compact form:

a b/2

( 1 . 1 1 ) w(x,y) = f f i

Y1sin a,, x cos /S„
- 7 — C0S

+ 2 q;-,, a,, />„, cos an | sin f)m r/] I d | dr] + WR (x, y) + wfi (x, y).

We have thus obtained a F r e d h o l m non-homogeneous integral equa-
tion of the second kind.

For the solution of this equation, we assume that the deflection of
the plate has the form

(1.12) w (x, y) = __\ A,, sin a,, x + 2J 2a B'"" s i n a" x c o s

Substituting the expressions (1.12) and (1.7) in the Eq. (1.11), we obtain,
after certain simple transformations, the following relations between the
coefficients A,,, Bnm, rn and rn:

(1.13)

U ,U - 8 / YA,C- +YYBndn \-\ 2r" +2-T''.(--ir
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The notations introduced are as follows:
« 6/2

aj,, — If q$ (I,»?) a)2, sin aj £ sin

(1.14)

0 0
a 6,2

bjim — j j qs ( I , »y) a)2, s in a, f sin a,, f cos /S* »/ d £ d»y,
d o
fl 6/2

Cy«m = | j Knm (I,r/) sin a/ ^ d | dł?,
0 0

a 6/2

djknm = I I K-,,,1, (i, rj) sin aj £ cos jS* •>/ d£ df?,
ó b

Ci»i(£,i/) = |qe (£( i?) a'2 + q(/ (£, 17) /Ŝ J sin a« £ cos /?,« •;/ +
+ 2 q^ (f, vy) a« /S,,( cos a« f sin (},„ »/.

In order to determine the coefficients An, Bnm, rn and rn, two further
equations can be used. Bearing in mind the boundary conditions
w (x, 0) = w (x, b/2) = 0, we obtain these equations, from the Eq. (1.12),
in the form

(1.15) (— l)mB„,« = 0.

The Eqs. (1.13) and {1.15) represent a complete system which suffices to
determine the deformation of the plate and the critical loads. This system
can, in certain case, be reduced to a simpler form containing the Bnm

coefficients only.
We pass now to the investigation of several particular cases. If we

consider the case of a plate loaded symmetrically in relation to the
straight line parallel to the x-axis and. passing through the middle of the
plate, the assumption of r,, = 0 and the rejection of the second condition
(1.15) will suffice. Thus, we obtain the system of equations,

, 4
An =

(1.16)

ah;, 2
B""l== nhl~~ 2* AJCJ<"»+ 2J ZJ Bjl, dj

u<JAnm\ j j k

n \ /, Bum == 0,

jl,nm O A,im

for a plate with the dimensions a-b (see Fig. 1). The system of equations
(1.16) can, by successive elimination of the coefficients An and rn, be
reduced to the more compact form

(1.17) 2 An 2J Btm= - 2_, 2J
m a 0 j k

n — bjim
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Starting from the Eqs. (1.13) and (1.15), we can also investigate the
case of a simply supported plate strip acted on by periodically distributed
forces qx, qy and qxy (Fig. 1).

If the coefficients r,, and r„ in the Eqs. (1.13) are disregarded, and the
two equations (1.15) excluded, we obtain directly

(1.18)
B,,m = - j - . —

ZJ

A) Cj,,m +

In this case, attention should be drawn to the fact that the corresponding
curvilinear integral in the Eq. (1.8) is equal to zero, since w {x, b/2) =^0.

b/2 b/2 r

TP"
. b/2

Fig. 4

This can easily be demonstrated by using the condition that qxy =
these segments (x = 0, x — b) dn consequence of the symmetry

We now pass to another case. Consider an a • b/2 plate simply
ed on three edges, the edge y = 0 being clamped (Fig. 4). This
be obtained from an infinite
plate strip subjected to the action
of periodic forces q, and to the
supplementary forces r (x) • (— 1)'
along the lines y ~ ib [i = 0,1, ...).

The integral equation has in
this case the form

= 0 along
of load,

support-
case can

. |
A ,A I ,A

+1 -1 T -1 +1 ! +1

Fig. 5

(1.19) w{x,y) = — J) w

+ Wr(X,y).

The G r e e n function w is obtained by determining the deflection of
the infinite plate strip loaded by the periodic forces +1, —1 according
to Fig. 5. This problem consists in the solution of the equation

NAAw {x, y, 1,1]) = p (x, y, £, y),



116 Witold Nowacki and Marek Sokoltiwski

where
. , 8

V (x, y, £, w) = -hr /, / sin a,, £ sin an x cos pm n cos ,
0° m n

and
„ n 7 t 7 (2 m— \ )n . .

d O

Assuming to in the form,

^z=
 2J ^J

 w"'" s*n a"x c o s ^"' y*

we can easily find the G r e e n function for the Eq. (1.20):

= , . 8 yi vi sin an £ sin a,, x cos fim f\ cos /3/w;

Similarly we obtain the deflection wr (x, y) due to the action of the
supplementary forces r (x), according to Fig. 4. Since this load can be
represented in the form of a series

2 V V • o
* r„ sm a„ x cos pm y,

we obtain

/i nn\ / \ 2 V V r " s i n O.H x cos Bm(1.20) wr (x, y) = - - 2 , Z 1

,„ „
If G r e e n transformation is applied, as before, to the double in-

tegral, and .the corresponding curvilinear integral disregarded, we obtain
a F r e d h o l m non-homogeneous integral equation of the second kind:

a bii I io

(1.21) w (x, y) = - [ f W (x, y , f, r,) (
DO

After a transformation of the integrand, and using the conditions (1.9)
and (1.10) we solve the equation (1.21) by substituting

w(x>y)=2j 2J Anm s i n a"x c o s /5''" V-
m n

Thus we obtain the system of equations
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The second system of equations will be obtained from the boundary
condition w(x, ib) — 0. From the Eq. (1.20), we obtain:

U.23) 2
m

-— 0.

The Eqs. (1.22) and (1.23) enable us completely to solve the problem
under consideration.

We can pass to a certain particular case, assuming r(x)—Q and
rejecting the condition (1.23). Thus, we obtain the system of equations

(1.24) A-nm'— -i 7™
a 0 Anm i

already obtained for a plate simply supported on all edges and having
the dimensions a and b, [1].

m.

The above considerations based on the reduction of the determination
•of the critical loads to that of the zeros of an infinite determinant,
produce, except in certain particular cases, enormous difficulties. Practi-
cal calculations must therefore be confined to a few elements of an
infinite matrix and of a determinant of the third or fourth order.

Considerable difficulties are also encountered in the general case of
plate load if we want to take into consideration the accurate values of
the stresses ax, ay and rxy. These stresses,
calculated from a plane state of stress, are
usually represented by infinite series or by
F o u r i e r integrals. In many simple cases
of load, where the forces q are constant over
certain regions of the plate, the calculation
is, however, considerably simplified.

2. In the second part of this paper, we
shall present a series of simple examples
some of which have already been solved in
other ways by various authors. They serve
as illustrations of the procedure described.

(a) A plate clamped along two opposite edges and acted on in the
.r-direction by a load uniformly distributed over the segment 2c (Fig. 6).

From the equation (1.4) we obtain, with the simplified assumption
of qx = qxv = 0, q̂  = q for b/2 — c < y < b/2 + c and qy = 0 over the
remaining part of the plate:

CD,
b

Fig. C

= f | q a)2, sin a; £ sin an £ df i
6/2—6- 0

b "2

q a,, sin a/ Ł sin a,, { cos
lit c 0

9ac

q a,, a
-(»;d^dr/ = ^ -
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an a. sin
•— q 2 /?,„ J"'

I a [sin (fiit+(),„) c sin (/3* — /im) c

where ójn is the K r o n e c k e r symbol.
The system of equations (1.17) therefore takes the form

f*n (4 q c af \ sin /S* c
(2.1) Anm Bnm = 2J

 B"'< I ~ b " \1~2 ~Tk~
 +

/ s in (/3A + /?>«) c __ s in (/g/, — /3,,Qc\ I „ |
+ i (fc + / 3 ) ' ( j ? / 9 ) /| 'T

Owing to the symbol <5«,, the series appearing in the Eq. (2.1) is very
simple.

Further simplification is obtained in the case of 2c = b, that is for
a plate subjected to a uniform pressure.

Then,
, a b , . . , ab ,

a,jn = q a„ -r ojn, Ojkn — Cjnm == 0, ajhnm = Q ~g" «;, ó>« O*m-

The system of equations

Bnm Anm + 2 An 2J ^"k — "T Q! a« X ^ ^'"' '" ^ fl ~

can be reduced to

C ft

*—X) /i7m — q a*'
and

Hence the critical value of the load q can be obtained with a desired
degree of accuracy. Thus, for instance, using only two terms of the sum
(2.2), we obtain the critical load for b/a = 2 as equal to q = 7.77 Nn2/b2 —
instead of 7.69 Njr2/b2 as obtained by T i m 0 s h e n k 0, [2].

(b) A plate subjected fo concentrated forces (Fig. 7). We assume an
approximate force distribution in the plate taking qxy = qy = 0, q.v = P/2 •
<\d{y — c)+6(y—b+c)\,3(y)as denoting the so-called D i r a c function1.

1 The meaning of this symbol is explained by the equation
b

f (x) S (x — c) dx = j (c), a < c < b.
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Under these assumptions we have
Pa , ,

Pa ,

Pa .
4

C/«m ~ : - j - a* cos /S,„ c fi;/i,

d/*«»i = — a* cos j8/f c cos /;',„ c <S/«.

Our system of equations takes the following form:

In IM Bum ~!~ 2 ..'l/i 2_j Bull -— Bnk(l - cos /3A c) ( 1 - cos §„, c).

i

CiJj

b/p
• « - •—-»-i

i -
0 B

12.3)

Fig. 7

This system can be transformed as follows:
- 2 Pal2Pa» .

r- S| C J,,st, c,

with the notations

<2.4)

c >

_
C =

! — c o s /

C *" Z j.ln Sj C (

c,

1 so — V - L Vlr~C05j£.c V ^ "cos '̂"c^2

so — ZJ A ' 1 ZJ A " > sa — ZJ A

m iinm m tttim *J£ c\nm
From the system of equations (2.3) we" can easily find the value of the
critical force P in a closed form:

p = = b
2f

+ 2 80 An

In the particular case of c = b/2 (the load of the plate consisting in one
force P), we obtain, after calculation of the sums (2.4),

nnb_ 4IV Tin sh e ch e +
a sire—e2 p ~;"i

2a
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If we pass to the limit for b-»- oo, we obtain the known S o m m e r -
f e l d solution, P f f=4Nji/a, [3]. In a similar manner, the solution in
a closed form can be obtained for a plate loaded by an arbitrary number
of 21 concentrated forces symmetrically arranged. This problem leads
to the calculation of the determinant of the order (I + 1).

(c) A plate loaded by concentrated
- forces according to Fig. 8.

Assuming that qx — qxy — 0 and
q}, = Pd(y — c), we obtain the system
of equations

b

Fig. 8

Bin,i • I tun ~\~ /

j

B u in —'•

jm sin a,i c sin aj c.

The buckling condition for a plate uniformly loaded at the edges
y = 0 and y — b can be found in a convenient way. In this case, we
calculate the critical force from the equation

y !__ =o

obtained by a suitable transformation of the system (1.17).
(d) An infinite plate strip loaded in

a periodic manner according to Fig. 9.
The values of the coefficients in the

Eq. (1.14) for a simplified stress distri-
bution, similar to the above, are

2 a C Jj
" 2

-Qi_.di-_ni

sin
X

\//Ą

to
LJ

o a s in jg,„ c
Cjnm = q a" i

Fig. 9

, a fsi=qa^— -sin (a/; + a»t) c sin (a/; — a,„) c
a a/( — a m

The equations i(1.18) can be reduced to the unique equation

(2.5) B,,m = - J L
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This undergoes a further simplification in the limit case of c -»- 0 where
Km 2qc = P. We then obtain the known example of a plate strip loaded
c->0

by concentrated forces. Thus, the expression for the critical force is
obtained in the closed form:

Per —
1 + 2 ^ -i-

_ N n,n sh2 e
a e + sh e ch e '

nnb
e =

(e) A plate simply supported on three edges and uniformly loaded
in one direction by a load q (Fig. 10).

The djknm component in the Eq. (1.21) is
6/2

djknm = q a* J sin an £ sin aj £ d£ j cos ftm f) cos j3;« JJdr],

ajknm
2 a h S S

In consequence, the system of equations (1.21) |
is reduced to

(2.6)
q a'fv 2

Anin = -j An,,, + 7—j T,t-

The Eq. (2.6), together with the condition {1.23),
enables us to represent the buckling condition in x

the form

b/2

Fig. 10

(2.7) - 0 .

The calculation of the infinite sum (2.7) leads to the transcendental
equation known from the technical literature on the subject under con-
sideration (see, for instance, [2]):

nuv

where

i,2 =l/A±c a
) A = <

(f) Finally, it is desired to indicate the possibility of using the above
method in a series of problems concerning plates loaded in a non-typical
manner. As an example, consider a plate simply supported on all edges
and loaded! according to Figs, l l a and l i b . In both cases, the state of
stress is determined as follows:
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for Fig. lla,
~ A

for Fig. lib,

_ j 0 for x < a/2,
~\Pd(y b/2) for x>a/2;

_JO for x < a/2,
I q for x > a/2.

The Eqs. (1.24) will take, in the first case, the form

(2.8) "aT^y 2

e f S s S r f S f / / f s S f S S

mnm

where

Fig. 11

0 for j + n — 2 i and j i=- n,
P izL' U

^+^(-1) 8 f o r i + n-2i-l,

^ K l ) " ' * for 7 = n.4 •'

In the second case" (Fig. l ib) , we obtain the system of equations

( 2 > 9 )

where

0 for j +
q b

ab
f o r 3 — n.
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Confining ourselves to a few terms of the sums appearing in the
relations (2.8) and (2.9), we can obtain, by setting the principal determ-
inant of the corresponding systems of equations equal to zero, appro-
ximate values for the critical loads.
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S t r e s z c z e n i e

O PEWNYCH ZAGADNIENIACH STATECZNOŚCI PŁYT PROSTOKĄTNYCH

Przedmiotem pracy jest wyznaczenie krytycznych wartości obciąże-
nia płyt prostokątnych, podpartych swobodnie na dwóch krawędziach
i spełniających różne warunki na pozostałych brzegach. Składowe stanu
naprężenia w płycie mogą być w ogólnym przypadku dowolnymi funk-
cjami współrzędnych x i y.

Warunek równowagi płyty podano w postaci równania całkowego
F r e d h o l ma (1.11) wzgl. (1.21). Poszukiwanie wartości własnej jądra
tego równania sprowadzić można, stosując podstawienia trygonometrycz-
ne typu (1.12), do znajdywania nietrywialnych rozwiązań układów rów-
nań algebraicznych (1.13), (1.15) albo (1.22), (1.23).

W szeregu przypadków szczególnych uzyskano ścisłe rozwiązanie pro-
blemu stateczności, a obciążenia krytyczne wyrażono w postaci zamknię-
tej. W przypadkach pozostałych ograniczyć się należy do uwzględnienia
tylko części nieskończonego wyznacznika otrzymanych układów równań.
Uzyskane w ten sposób rozwiązania przybliżone wykazują zadowalającą
zgodność z rozwiązaniami ścisłymi, uzyskanymi na innej drodze.

P e a IO M e

O HBK0T0PHX 1IPOBJIBMAX yCTOMHMBOCTH IIPHMOyrOJlbHblX
* riJIACTHHOK

B pa6oTe paccMaTpMBaeTca onpe^ejieHHe KpnTMHecKMX 3HaHeHMii
rpy3KM npHMoyroJiBHBDC njiacTMHOK, CBo6ofl«o onepTbix Ha AByx
M yflOBJienBopHiomHX pa3jn«HbiM ycjioBMHM Ha ocTaJibHbix.
HanpHJKeHHoro COCTOHHMH B njiacTMHKe MoryT 6BITŁ B o6meM • cjiynae

np0M3B0JIŁHbrMH dpyHICECUHMH KOOpflMHaT X M y.

Arch. Mccii. Stos. — 5
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paBHOBecMH njiacTMHKM npMBO^MTCH B BM^e MHTerpajiBHoro
$ p e s r o J i b M a (1.11) KJIH (1.21). IIOWCKM coScTBeHHoro 3Ha-

3Toro ypa'BHeHKH MOJKHO, npMMeHHa TpMroHOMeTpMHecKMe
TKna (1.12), cBecTK K Haxoac^eHMio HeTpitBMajiBHBix p e m e -

HMM CMCTeM aJire6paMiecKMx ypaBHeHJrił (1.13) H (1.15) HJIM (1.22) K (1.23).
B î ejiOM pafly cjiynaeB nojiyneHBi TOHHBie pemeHMH npoSjieMbi ycToił-

HMBOCTM, a KpHTM îeCKMe Harpy3KM BbipaJKeHŁI B 3aMKHyT0M BWfte.
B ocTaJiBHBix cjiy^ianx cjie^yeT orpaHMHMTBca y^ieTOM TOJIŁKO HącTM 6 e 3 -
KOHe^moro fleTepMMHairra CMCTCMŁI ypaBHeHMił. IIoJiyHeHHbie TfiKMM o6pa-
3OM npn6jIM>KeHHBie peUieHMH yflOBJieTBOpMTejIBHO COTJiacyiOTCH C TOH-
HBIMM pemeroiaMM, no-nyneuHbiMH
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